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ABSTRACT

A supersymmetric non-linear o-model provide us a tool for studying
the dynamics of superstrings on a compactified space. If the compactified
space is a Ricci-flat Kahler manifold, the non-linear o-model has extended
superconformal symmetry and the partition function of the model is ex-
pressed in terms of characters of the superconformal algebra. The parti-
tion function must be modular invariant and this condition gives strong
constraints on the spectrum of the model. These constraints are inti-
mately related to geometry of the compactified space. Their implications
to particle spectra of the compactified heterotic string theory are also

discussed.



1. INTRODUCTION

The year of 1984 was the begining of the superstring age. Soon after the
discovery of the anomaly cancellation mechanism for the ten-dimensional super-
gravity and super Yang-Milles theory with gauge group SO(32) or Es ® Es'!!, the
heterotic superstring theory with Es ® Es gauge symmetry was constructed!?!,
whose low energy effective field theory was shown to have a solution with four-
dimensional flat spacetime and with realistic particle spectra and gauge symmetries®'.
In the following few years, most of the phenomenological analysis of solutions to
the superstring theory had been made based on the low energy effective field
theory except for some models like orbifolds, which can be constructed from free
fields on the string world-sheet. To get reliable results, however, analysis directly
based on superstring on compactified space are desirable. In recent years ad-
vances in technologies of conformal field theory have made it possible to obtain

exact results on compactifications of extra dimensions in the superstring theory.

To build a unification model from superstrings, one has to understand the
dynamics of superstrings on a compactified space. Supersymmetric non-linear
o-model on a two-dimesional world-sheet provide us a tool for studying this dy-
namics. In this paper I will forcus on the extended superconformal symmetry
in the non-linear o-model and derive some exact results concerning the parti-
cle spectra of compactified superstring theory. In section 2, I will review on
the N = 2 superconformal invariance. This symmetry is common to all the non-
linear o-models we will consider here*!, and is intimately related to the spacetime
supersymmetry in uncompactified dimensions®®7l, If we consider compactifi-
cation down to six dimensions, the non-linear o-model will acquire the N = 4
superconformal symmetry. Then its partition function is expressed in terms of
characters of the N = 4 superconformal algebra. If we require the model to
be invariant under all possible conformal transformations including those not

continuously connected to the identity, the partition function must be invariant



under modular transformations and this condition gives strong restrinctions on
the partition function. We discuss the general properties of a modular invari-
ant partition function in section 3. There we will see that informations on the
topology of the target space (complex two-dimensional K3 surface) are naturally
encoded in the partition function. Once the partition function for a non-linear
o-model is obtained, one can read off the particle spectra of the compactified
heterotic string theory, and this procedure is described in section 4. There we
will see the connection between the extended superconformal invariance and the
spacetime supersymmetry. Though compactification down to six dimensions is
not realistic from the phenomenological point of view, I devote most parts of this
paper to it. This is because in this case we have sufficient amount of knowledge
of both the symmetry of the non-linear o-model and the geometry of its target
space, and we can appreciate its general structure rather in detail. It will provide
a good exercise for us before attacking compactification down to four dimensions.

In the last section, I describe some result on the latter problem.

In the last three years we have observed the intriguing connection between
the conformal symmetry and the complex geometry of the string world-sheet (a
Riemann surface) and it has been proved important in understanding multi-loop
quantum effects in the string theory. I hope the studies of the relation between
the superconformal symmetry and the geometry of a Ricci-flat Kahler manifold

will also uncover profound structure in the superstring theory.

This paper is based on the work® with Professor Tohru Eguchi, Doctor
Anne Taormina and Doctor Sung-Kil Yang. I would like to thank them for
collaboration and discussions on this subject. I am grateful to Professor Takeo
Inami for careful reading of the manuscript. This work is supported in part by
Department of Energy of the United States of America under contract number
DE-ACO02-76ER02220.



2. N =2 SUPERCONFORMAL SYMMETRY

The target space of a two-dimensional supersymmetric non-linear o-model
describing a compactified theory with spacetime supersymmetry has to be a
Ricci-flat Kahler manifold®. The non-linear o-model of this class has N = 2
supersymmetry!¥. In this section, I will explain how this symmetry comes about

and will review some general properties of theories with this symmetry.

Supporse that ten-dimensional flat spacetime for the heterotic superstring
theory is compactified down to four dimensions by curling up its extra six di-
mensions.

R9,1 - M6 X R3,l

Each field configuration of Mg will gives different effective theory in four dimen-
sions. Thus among symmetries of the original ten-dimensional theory, only those
preserving the field configuration on Mg will remain unbroken after compactifica-
tion. Conversely if we want some symmetry to be observable in four dimensions,
the field configuration cannot be arbitrary. It was shown by Candelas, Horowitz,
Strominger and Witten®® using the low-energy effective field theory that the

spacetime supersymmetry in four dimensions requires Mg to be Ricci-flat and
Kahler.

These geometrical terms mentioned above mean the following. The curva-
ture tensor R,, ?, has four indices; the first two define an infinitesimal parallelo-
gram in Mg, and the latter two describe how a tangent vector is rotated when it
is parallel-transported around the parallelogram, i.e. R, *, is a matrix of SO(6)
concerning the latter indices p and 0. When Mg is Kahler, we can choose com-
plex coordinates on it in such a way that their holomorphic and anti-holomorphic
indices are not mixed when a vector is parallel-transported. This is equivalent to
saying that the curvature tensor is now a matrix of U(3), a subgroup of SO(6).
Furthermore Ricci-flatness means that a trace of R, #, with respect to the latter

two indices vanishes. Thus the curvature tensor belongs to an SU(3) subgroup



of U(3).
so(6) & y(3) M su(s)

Dynamics of superstrings on a curved space is described by a supersymmtric
non-linear o-model on the world-sheet. Its dynamical variables are two-dimensiona
bosons X*(z,%) and X’_'(z,E), which geometrically is an embedding map of the
world-sheet into the target space Mg, and fermions ¢} and dzi carrying an index

of a tangent vector on Mg (V5¢+ = £+).

In the following, an important role is played by a world-sheet current defined
by

J(2,2) = g, 5(X)vi 9t
where g;- is a metric on the target space. The fermions ¢ form a section of a
vector bundle over the world sheet defined by pulling back the tangent bundle on
the target space by X*. Then the standard computation of chiral anomaly leads to
the observation that d;J is proportional to the first Chern character R.;@zX 19:X i
of the vector bundle®®. When the target space is Ricci-flat, we obtain 9zJ = 0,
i.e. J is a holomorphic current on the world sheet. This phenomenon can be
understood intuitively as follows. If Mg were flat, all the fermions would be free
and they would make SO(6) current algebra. In the presence of the curvature,
this symmetry is in general broken. Now SO(6) is locally isomorphic to SU(4)
and it has U(1) ® SU(3) as a sub-group. In the Ricci-flat Kihler manifold, the
curvature generates SU(3) rotation of a tangent vector. Thus the SU(3) part of
the SO(B) current algebra may be broken by the curvature effect, however, the
U(1) part remains unbroken. The holomorphic current J defined above generates

this U(1) current algebra.

It has been know that the supersymmetric non-linear o-model for Mg is
ultra-violet finite in lower orders of perturbation theory19!11, Though there
appear divergences from the fourth order!?!, they can be cancelled by adding

counter terms order by order in perturbation in such a way that the fixed point



struncture of the theory is not affected!3!. It has also been argued that this
feature persists non-perturbatively!45l, In the following we assume that the

system we are considering has N = 1 superconformal symmetry.

Combining N = 1 superconformal symmetry with U(1) current algebra gives
N = 2 superconformal symmetry. In addition to the Virasoro generators L, and
the U(1) current generators J, (n € Z), supercurrents come in pairs, G, and G,,

with opposite U(1) charges;
[JMG"] =+ Grin [Jma-r] =— Grin

where r € Z+1/2 for the Neveu-Schwarz (NS) algebra and r € Z for the Ramond
(R) algebra. A remarkable feature of N = 2 superconformal algebra is that there
is an isomorphism between the NS and the R algebras®16l. If L, J, and G,,G,
are the generators of the N = 2 algebra, one may define a new set of operators
as
' ¢ 2
anLn+eJn+6 € bno
J:. = J,, -+ % € 5,,‘0 (1)

G:' = Grye, a—r' = Gr—c ,
and, for an arbitrary value of ¢, they satisfy the same commutation relations as
the original ones. Here ¢ is the central charge of the N = 2 algebra, which is
equal to 3 x (the number of complex dimensions of the target space). Note that,
in the above, modding of supercurrents G, and G, is shifted by €. In particular
if we take € = 1/2, the R algebra and the NS algebra are related; the R algebra
can be realized in a representation space of the NS algebra and vice versa. This

phenomenon is called the spectral flow.
The spectral flow of the N = 2 symmetry can be neatly illustrated by using
the character of a representation of the NS (R) algebra defined as
chys(r)(7,0) = tracensr) (g™ ~*/* ") (2)

(q — eZm’r)

)



where the trace is taken over the representation space. It keeps track of degen-

eracy of states at each energy level and for each U(1) charge.

Characters for the NS algebra, chys(r,0), are basic building blocks to ex-
press the partition function of the supersymmetric non-linear o-model on a two-
dimensional torus, where the fermions 7 (¢'?) are anti-periodic in both of its
homology cycles. Now if we shift the argument 6 in the NS character by =,
the exponent of ¢ in the trace becomes Lo + %Jo instead of Lo. Employing the

isomorphism of the NS and R algebras (1), we obtain the formula
chys(r,0 + n1) = chg(r,0) g MeE0 (3)

where the trace in the right hand side is taken over the representation space
of the R algebra into which the spectrum of the NS representation in flows.
These R characters give the partition function of the theory on a torus when
the fermions are anti-periodic in one homological cycle and periodic in the other.
The spectral flow property of the N = 2 characters is fundamental to spacetime
supersymmetry in the compactified string theory, though it is not sufficient for

this as we shall see below.

These characters have other properties which will prove important in the

following discussion. Let us compare the following two equations;

chys(r +1,0) = trace (ez”"(“'c/“)qL°‘°/24e‘o"°) ,

chys(r,0 + m) = trace (e‘”J°qL°_‘/24e‘aJ°) .

(4)

It is easy to convince oneself that the identity (—1)*Zo~*) = (—1)7~9 holds
on an irreducible representation space of the NS algebra, where h and Q are
highests weights for Ly and Jy respectively. This is because the generators of the
NS algebra either commute or anti-commte with both (—1)2(Ze=#) and (~1)7e-9;
those which commute with them are L,’s and J,’s and those which anti-commute

with them are G, (G,)’s. Then by comparing the above two equations, we obtain

Cth(T + 1,9) = cth('r,0 + ﬂ') . e2m’(h-—c/24-—Q/2). (5)



Finally ler us see what happens if we put § = 7 + nr. From eq.(3), we get

chys(r,m +77) = chp(r,m)g /e ¥e"

(6)
= tracen((~1) gt/ H)g /e,
Since Jy counts the fermion number of a state, the right hand sind in the above

gives the Witten index!” of the representation.

Due to the isomorphism in the N = 2 algebra, informations on both NS
and R representations are simultaneously encoded in the single NS character
chys(7,8), and they can be read off by shifting the variable # in directions, 77,

m and 7 + 7.

chns(r,0 + 77) = chp(r,8)g~c/*e™%°
chys(r, 0+ 1) = chys(r + 1,0)e 2milh=e/24-Q/2) (7)
chys(r,m + nr) = (Witten index ) x (—g~/*)

3. K;3; SURFACE AND N =4 SUPERCONFORMAL SYMMETRY

3.1 N =4 Superconformal Symmetry

N = 2 superconformal symmetry in a supersymmetric non-linear o-model
is a commom feature for any Kahler manifold with a Ricci-flat metric. When
the target space has two complex dimensions, there appears additional chiral
symmetry, which makes it possible to examine the spectra of the corresponding

non-linear o-model in more detail.

In the previous section, we have seen how the U(1) current algbra emerges in
the non-linear o-model. Let us repeat the discussion there in the case of complex
two-dimensional manifold. If the manifold were flat, the non-linear o-model

would have SO(4) current algebra. SO(4) is locally isomorphicto SU(2)®SU(2).



A curvature of the target space serves to break this current algebra. However,
for a Ricci-flat Kahler manifold, one of these SU(2) parts is kept intact. Thus in
this case the non-linear o-model has SU(2) current algebra including the U(1)

as its sub-algebra.
S0(4) — SU(2)

It is known that two-dimensional Ricci-flat K&hler manifolds are devided into
two topological classes; K; surfaces with non-trivial SU(2) curvatures and flat
tori. Every K3 surface has a unique holomorphic two-form, €;;(X)dX* A dX7,
which we can employ to define currents on the world sheet.

JH2) = vl T(2) = vkl (8)

These two currents, combined with the original U(1) current J = gi‘;z/)j, 7, make
the level-1 SU(2) current algebra, and the N = 2 superconformal symmetry of
the non-linear o-model is enhanced to the IV = 4 superconformal symmetry with

c=3X2=6.

Since the N = 4 algebra contains the SU(2) current algebra, its repre-
sentation space is decomposed into the sum of SU(2) representations and its
character, chV=*(r,8), can be expanded in terms of the SU(2) characters. The
level-1 SU(2) current algebra has two unitary representations, one with a SU(2)
singlet ground state (I = 0) and the other with a doublet ground state (I = 1),
and their characters are given by

1 2
ChS_U(z) — qn et2nﬂ
=0 TI(T) ’§Z

N 2chf=l{)(2)tr,0 —0) [(19;((:,)0))2 - (0471((:)0)>2J ’

1 2 ;
hsjfﬂ) — (n+1/2)% i(2n+1)6
T a0 ,§z" :

N 2chf=U1(2)tr,0 =0) [(0;((2)0))2 - (017((;)0))2]

10




Here n(r) is the Dedekind n-function, and 93 and ¥, are elliptic 9¥-functions.
Then a character for the NS sector of the N = 4 algebra is expanded in terms of

them as
ch¥54(r, 0) = c1(r) ch 5B (r,0) + ca(r) ch %P (r, 0)

“an) () g ()

Here the branching coefficients ¢;(r) (¢;(r)) ( = 1,2) depend only on r.

Since the N = 4 superconformal algebra also contains the N = 2 algebra, the

character chy3*(r,8) should satisfy the similar equations as (7). The equation
chy5t(r,0 = v + m) = (Witten index )(—g~V/4)

gives a relation between ¢1(r) and ¢;(r) in eq.(10), and by solving it we obtain

chN5*(r,0) = —(Witten index ) - (’%g)l)z + ¢(1) (fiéﬂy (11)

(90 = 95(0 = 0)).
Thus we are left with one unknown function ¢(7).

Unitary representations of the N = 4 superconformal algebra were stud-
ied by Eguchi and Taormina/*®. They classfied the representations into three.
First, for an arbitrary positive value of a conformal weight h, there is a unitary
representation without Witten index. Its ground state is SU(2) singlet and the
character is given by

g% (95(6)

chD(r,0) = ¢ - — (—n__)z : (12)

One can see that a character of SO(4) current algebra is factored out in the
above expression. Thus the SO(4) symmetry remains unbroken in these rep-

resentations. There are two representations with non-vanishing Witten indices.

11



The one is with a singlet ground state of A = 0, and the other is with a doublet

ground state of h = 1/4. Their characters are

o) =13 (S0 (£ ani) (2]
1(6
(0)

chicy(r,8) = —1- (0 )> +h3(r)~(ﬁ§£@)2,

where h3(r) is given by

1 qm2/2—~1/8
hs(r) = —. (14)
7](1-)0&0) (T) gz 1 + qm 1/2

One can see that SO(4) characters cannot be factored out from the above ex-
pressions (13), and the SO(4) current algebra does not act on the répresentation

spaces with non-vanishing Witten indices. The identity
chi=o(r,0) + 2 - chi=y(r,8) = chl?(r,0) , (15)

which can easily be read off from the above equations, is also relevant in the

following discussion.

3.2 Spectrum of Supersymmetric Non-Linear oc-Model

In this section we derive some exact results on spectrum of a supersymmetric

non-linear o-model for K3 surface.

Consider a torus defined by C/A where A is a lattice generated by 1 and
7. If one put the non-linear o-model on this torus with anti-periodic boundary
conditions for fermions in both homology cycles, its partion function is expanded

in terms of the NS characters of the N = 4 superconformal algebra and given as

12



+ ) Nio (ch},o)(a) + ¢hj=o(0) + complex conjugate)
h

+ > Naa (chf‘o)(ﬁ) - c¢hi=1(0) + complex conjugate) (16)
3

+ > N, 5 kD (8) - chl(0) .
hh
Here the coefficients Ny,1, N0, N1 and N, ; are either zero or positive integers
and count multiplicities of the N = 4 representations in the total Hilbert space of
the non-linear o-model. The only assumptions in the above expression are that
the vacuum state, i.e. the highest weight state in |ch;=o|? appear with multiplicity
one and that there is no cross term of the form chi—g - chi=;. The latter is the
same as demanding that there is no free fermion in the spectrum. Presence of free
fermion would signal that the target space is flat in some direction. Since there
are only two topological classes for two-dimensional Ricci-flat Kahler manifold,
K3 and torus, free fermion implies that the target space is a torus, which is not

our concern here.

If we consider the Eg ® Eg heterotic superstring theory on K3 x R%!, thes
coefficients IV are related to the particle spectra to be observed in the uncom-
pactified six dimensions R%!. In the next section, we will consider the simplest
compactification scheme where one of the Eg gauge symmetry is broken down
to E7 upon compactification. Then it will be shown that the coefficient Ny,
gives the number of massless spinors in six-dimensions of the 56 representation
of E7 while Nj=1; +2Ny, is the number of E; singlet massless spinors. The
coefficient N,=; 9 counts the number of extra U(1) gauge bosons generated upon

compactification.

If one assumes that the heterotic string theory in ten dimensions can be
well-approximated by its low energy effective field theory, the massless particle

spectra in the six dimensions are estimated as follows!!¥., The number of the

13



spinors in 56 of E7 is given by the number of holomorphic (1,1)-forms on Kj. All
the K3 surfaces have the same topological nature, and the number of holomorphic
(1,1)-forms is always 20. On the other hand, the coefficient Vy=1,1 related to the
number of E;-singlets is twice the number of deformations of complex structure

for holomorphic tangent bundle over K3 and it is 90.

Now we are going to derive some exact relations among these coeflicients
by imposing the modular invariance for the partition function. The partition
function Z (6 = § = 0) as a function of 7 should be invariant under the modular
transformations which do not change the periodicities of the fermions; 7 — 7+ 2
and 7 — —1/r. To appreciate consequences of this condition, it is useful to

consider a function E(r) defined by

" 1 \* 19:(30)(1') 2: 0BT (gl
E(7) (77("')) ( ) ) =Z(0=0,0=n+77)-(—7"%). (17)
Then the modular invariance of Z implies that

E(-1/r) = rzE(r) , E(r+2)=E(r) (18)

This property determines the function E(r) upto a constant multiplier. The
constant is fixed by demanding that the vacuum state appears with multiplicity

one. Since the Witten index of the | = 0 (vacuum) representation is —2, i.e.
chi—o(r,0 = m+ 77) = =2 x (—¢" ¥4,

we obtain E(r) = —2+--- as ¢ — 0. Thus the function E(r) is completely fixed

as
B(r) =2- ((9")* - (")) -
On the other hand, substituting

Chz:o(T,0 =+ 7r7-) = —-92. (—q’l/“)
chisa(r,0 = 7 +77) = 1 (=g (20

hl(r0=n+77) =0

14



into eq.(17), E(r) is related to N’s as

1\ (300) . chios (r
50)- (717) (n(r)) Tl T ehnl)

(21)
-+ Z(Nh']_ - ZNh,o) . Chg‘o) .
h

Comparing the above with eq.(19) using the expressions for the characters (12),
(13), we obtain

F(T) = E(Nh,l - 2Nh,o)qh

(22)
=2+ 2q1/8n(r) (

(39 (n)* — (9P (7))
n(r)*

—(4+ Ny - hg(T))

Now we argue that IV, o and N, ; should vanish unless 4 is an integer. By
shifting 7 as 7 — 7 + 1 we obtain a torus with the same complex structure, but
the periodicity of the fermion is flipped in one homology cycle. The change of the
periodicity for one cycle is taken care of by inserting the U(1) current J(z) along
its dual eycle and, in this case, we can just shift § as § — 8 + . This procedure
does not break the superconformal invariance, and the partition function should
remain invariant under the simultaneous operations 7 — 7+ 1 and § — 6 + =.
When h is not an integer, chj—g - —c;(,:(ﬁ and chj—; - CTE,OT are not invariant under
this operation, and that their coefficients N, and N, in the partition function
Z(8,8) should vanish.

Since the sum in the first line of eq.(22) is over integral h, the fractional
powers of ¢ in the second line should cancel among themselves. This fixes N;,
to be 20. Once N, is known, the function F(r) is determined completely and

so are the numbers N, ; — 2N, .

F(r) = 90q + 462¢* + 1540¢° + 4554¢* + 11592¢° 23)
23
+ 278304° + 61686¢" + 131100¢® + - - -

15



Especially Np=1,1 — 2Ny, is fixed to be 90. In fact E(r) in the above gives
the elliptic genus?®211221 for K, surface, and all the expansion coefficients are

topological invariants.

If ¢* in F(r) had a negative coefficient for some value of k, the corresponding
N0 would be non-vanishing. If this were the case, there should be a holomorphic
field of dimension h, and the symmetry of the system could not be just the
N = 4 symmetry but always larger than that. I have computed the expansion
coefficients of F(r) to the order of ¢°° and found that they are all positive and
exponentially increasing. One can also examine the asymptotic behaviour of
F(r) as r — 0, i.e. ¢ — 1. Using the modular transformation property of the

J-functions and the Mordell’s formula®¥ for h3(7),

oo

1
hs(~1/7) = =hs(r) + 1y / d

-0

qa2/2

a_—_—-——-—
2coshma ’

we obtain

2coshrra

F(-1/r) =2+ V=ir @/ (q“/8 (2-F(r) +24- 70 da_g.i/i_) ,

where § = e~2™/7, Taking the limit 7 — +ic0 (§ — 1), the above gives

F(=1/r) =3 (N1 — 2Nno) -
h (24)
— 2V =irg VP 124 ...,

This observation seems to imply that the g-expansion coefficients of F(r) are all
positive and the symmetry of the generic non-linear o-model is just the N = 4
superconformal symmetry, though I have no rigorous proof for it. Of course this
does not exclude the possibility that the symmetry of the system is enhanced in

some particular case, such as extra U(1) gauge symmetries in orbifold models.

Now that we have determined all the numbers (V51 — 2N, o), We can write

16



the partition function as

Zns = |chizo|?* + 20|chi=1|?
+ (90 + 2z,) cthL)1 cchi—1 + 11 ch.((g1 - chi—o
+ (462 + 2z,) chg2 - ¢hi— + T, chg:)z)2 - ehi— (25)
+ -+ + complex conjugate
+ 3 Ny ch® . ch0
hi>0
The coefficients z;’s are not determined from the above consideration, and depend

on the detail of the model. If one employ eq.(15), the above can be expressed in

a more compact form as

Zns = |chi=o|? + 20| chi=y |
+ (90ch{Y, + 462¢h{%, + 1540ch(Y; + 4554¢h, + - .- ) - iy (26)
+ complex conjugate + Z N,z chs,o) . :}—z?)— .
hh20
Thus the partition function of the non-linear o-model is clearly separeted into
two parts; those which are universal to all the models with the N = 4 symmetry

carrying the topological informations of K3 surface, and those depending on

details of each model.

In this subsection, we have seen some general properties of the modular
invariant combination of the IV = 4 characters. By imposing the modular invari-
ance, we obtain infinitely many relations among the coefficients of the modular
invariants and they reproduce topological invariants of K3 surface. An arbitrary
K3 surface will give a ultraviolet-finite supersymmetric non-linear o-model. The
result in this section seems to suggest that, conversely for an arbitrary modular

invariant of the IV = 4 characters, there is a geometry of K3 surface.

17



3.3 Examples

There are several models with N = 4 superconformal symmetry for which

we can compute a partition function explicitly.

(1) Orbifoldsi?4

There are four possible types of orbifold limits of K3 surface given by dividing
the product of complex tori T} x T; by the Zk action (K = 2,3,4,6)1,
20i/K 5

——21rt/Kz2

2] € 27 ™ €

Here z; is the coordinate of the torus T;. The partition function for the super-

symmetric non-linear o-model on the orbifold is given by

1 1 Ly 2_1 2 193(1' 9)
8,8 YR g3v |
Zortitold®9) = R pp 2, T L a) 27
Ba(r,0+ s 0 = 57) ;1)
+ Z nr,a' 19 (,+,-1-)2 | b
0<r,s<K-1, {r,s)#(0,0) N\"k

where wg and wy, are weight vectors of a real four-dimensional lattice determined

by the shape of the torus Tj X T3, and the coefficients n,, are defined by

ng ., = 1 (251n7rs>
0,8 — K K

and the symmetry relations
Nys = Nratr s Trs = Ny K-r -

It is straightforward to see that the above partition function can be written

in the form of eq.(26). In fact

p— s+r r) 2
Zorbifold8 = 0,0 = 7 + 1) - (=7'/*) Z Ny, (—T—T—>

=2 ((#2)* = (94)") - (%) (%_)) |

18




and the elliptic genus E(r) is correctly reproduced.

(2) Gepner’s mode]/?!

Unitary representations for the N = 2 superconformal algebra has been
worked out by various authors®271281 and, for the discrete series with ¢ =
% (k = 1,2,3,...), modular invariant combinations of their characters were
classified?¥. By exploiting these modular invariants, Gepner!26! constructed par-
tition functions which will correspond to a class of K3 surfaces. Since their central
charge c is six, he considered a tensor product of N = 2 representations so that

their central charges add up to six.

M 3k
c“,g;k,+2_

A unitary representation for the NV = 2 algebra in the descrete series is
labeled by two indices,l and m (I =0,1,...,k, m = =, -1+ 2,...,l), and in the
NS sector its conformal weight k and U(1) charge Q are given by

I(l+2) —m?
a(k+2)

E

h = Q:

k+2°
Let us denote its character by ch,("ﬁz‘(r, g). Basic building blocks of a Gepner’s

model are products of these characters;

M
ch({c") (r,8) . 29
liymy

1=1

. . . . . k
Since modular invariant combinations of ch,( )

.m are know, one can readily construct

modular invariants of these products (29).

So far we have considered characters of the N = 2 algebra. The N = 4
algebra contains the level-1 SU(2) current algebra as well as the N = 2 algebra

and we must take it into account. The N = 4 characters ch™¥=* (r,8) are expanded
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S

in terms of the SU(2) characters ch; U(z)(‘r, ). As one can see from eq.(9), the

SU(2) characters are periodic in 8 as

chVD(r,0 + 27) = kU (r,0)

. (30)
ch}w(z)(r,ﬂ + 277) = ch;w(z)(r,e) N

and so are the IV = 4 characters. On the other hand, the N = 2 characters for
descrete series do not satisfy these properties.
ch,(f")l(r, § + 21) = e*™rts ch,(,'il(r,e)

e (31)
ch,(:z,(r,ﬂ +277) = ch®)_,(r,0) - g e~

lym-2

Thus for the SU(2) current algebra to act properly on the model, we must impose

the charge integrability condition

> U integer , (32)
ki +2

and sum over the orbit generated by the shift § — 8 + 2=,

(k) (kng)
D chiimiag Al —2p 5 (33)
=0

where (k + 2) is the least common multiplier of (k1 + 2),..., (kar + 2), and ch,(,k,L
for |m| > | is defined by

Chl(,krzl. = Ch(kk_)l,k_m — Ch[(”:,l+2(k+2) .

Conversely the orbit of the shift § — 8 + 277 constructed as in the above can
be expanded in terms of the SU(2) characters and the N = 4 symmetry acts

properly on it.

If the charge integrality condition (32) is met, all the terms in the orbit
(33) transform in the same way under the modular transformation, r — —1/7.

Also the charge integral orbits transform among each other under the modular
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tranformation. Thus one can obtain the modular invariants of the charge inte-
gral orbits from the modular invariants of the N = 2 discrete characters. This
construction is quite similar in its spirit to that of an orbifold model. The N = 2
sub-system with ¢ = k +2 has Zj+2 symmetry, (I,m) — (I,m + 2), and their
tensor product has Zj, 12 ® - - - ® Zx,,+2. Gepner’s model is given by twisting the

simple tensor product of these sub-systems by the action of the diagonalZj.,.

We have examined the partition functions of Gepner’s models explicitly,
and found that some of them coincide with those of particular orbifold models®!.
Recently Martinec®®, and Vafa and Warner®!! made an interesting observation
on these models concering their connection to algebraic geometry of the target

manifolds, but the significance of their observation is yet to be explored.

4. HETEROTIC STRING THEORY ON R5! x K,

In section 3, we have studied the sesquilinear form of the N = 4 characters

ZN5(0,5) = |ch¢=0(0)l + N1 1|Ch1 1(0)'
+ ZN;,D ( h( ) . chj= 0(0) + complex conjugate)
h

+ Y Nis ( - ¢hi=1(8) + complex conjugate> (34)
h

+ 3 Nyi chy) (6) - chg”(e) ,
h,h

which is invariant under modular transformations, r — —1/r and 7 — 7 +
1, § - 8 + . From the above modular invariant, we are going to derive a
partition function of the Eg ® Eg heterotic string theory compactified down to

six dimensions.

The partition function of the heterotic string theory in flat ten dimensions
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is written as

4
D=10 _ (In: T) RP=10(r:0;,....8,) - LD=10(r: 01, ..., 016) (35)
where
1 4 19 4 4 "9 oa ‘ 19 0“ |
RD=10=%(_> (H 3 H _H 2( )+H 157 ))
177 a=1 a=1 a=1 n a=1 (36)
£D=10= (5) chEs (Pl, ,(PB) chE3((pg,...,()016) )
and

9 8 ¢ 8
chE‘(<P1, »p8) = 2 (H 3(17 ) + 4(% H
b=1 b=1 :

ZD=1°(—-1/r; —5/7, -@/r) = ZD.—.m(T; @‘, 3),

ZP=1(r 4+ 1,6,8) = Z2°=1(r;4,3) .

Due to the Jacobi identity, R? :10(5 = 0) = 0, and the particle spectra is space-

time supersymmetric.

We are discussing the heterotic string theory in the light-cone gauge, and
eight free fermions in the right moving part realize the SO(8) current algebra.
Now if we put this theory on R*! x K3, SO(8) is decomposed into SO(4) ® SO(4)
and the latter SO(4) is broken down to SU(2) due to the curvature on K3 as

described in section 3.
S50(8) D SO(4) ® SO(4) — SO(4)  SU(2)

Then it is natural to replace the spectrum of four free fermions and four free

bosons in RP=1° by the N = 4 superconformal characters chns,; (¢ is an index of
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a representation) as

193(01)193(02) B4(01)94(62)

R 1 (1)4 -——7]—2——— . cth,,-(r,Bg, + 04) - “—;2—-——- . chﬁ".(T,es + 04)
T 2\n 92(0,)95(8 91(6:),(0
’ -2 11)722( 2 + chri(r,0s + 04) + ! 11)721( 2 - chy (7,05 + 04)
(37)
where

chﬁ,i(r, 0) = chysi(r, 0 + )
chpi(r,0) = ¢/*e chnsi(r,0 + wT) (38)
chy (7,0) = chri(r,0 + ) = (Witten index ) .

In summing over spin structures in eq.(37), the relative signs are chosen in such
a way that, under the modular transformation r — —1/r, R;’s transform in the
same way as the N = 4 characters chyg; and that each R, is invariant upto
phases under 7 — 7 + 1. They make building blocks for the right moving part of

the heterotic string.

Let us now turn to the left moving part. In the analysis based on the low
energy effective field theory of the heterotic string, cancellation of anomalies in
the compactified theory requires that the integral of a square of the curvature,
Ri;juR"* is equal to the integral of a square of the Yang-Mills field strength,
trace(F;; F'7)B11%, The simplest solution is to embed SO(4) of the tangent bundle
of K3 into one of the Eg gauge groups and to identity the spin connection to the

gauge potential on K3. This will break one of the Eg down to E-.
Es (DSO(12)®S0O(4) ) — E7r (D SO(12) @ SU(2) )

The right mover of the heterotic string in flat ten dimensions consists of free
bosons for eight transverse directions and sixteen free fermions generating the
Eg® Eg gauge symmetry. Thus in the exact spectrum of the compactified theory,
the identification of the spin connection to the gauge potential amount to picking

up four free bosons and four free fermions from the spectrum and to replacing

23



them with the IV = 4 characters.

6 d 6 9
4 I1 a(y) - chnsi(r, o1+ ws) + || Sl) < chgg (T o7+ 0s)
Li= (l) l =1 7 b=1 n ,
+11 ter) chri(r, 01+ 0s) + [] o) ¢hiza(Ts 01+ o)

X ChEa (T; 95 +eey (1016)
(39)

The signs in eq.(39) are again chosen in such a way that L;’s transform in the
same way as the N = 4 characters under 7 — —1/r and that each of them

invariant upto phases under r — 7 + 1.

One can now write down a partition function for the heterotic string theory

on R%! x K3

(Rz=o cLi=o + N1 Ri=1+ L1y
+ }: Nhio (Rﬁ,o) - L1—o + complex conjugate)
h

1 2
D=6 __ .
z - (Im r) + Y Nis ()25,0) - Li=1 + complex conjugate) (40)
h

+3 Nz BY - LD
hh

In the partition function for the non-linear o-model (34) is invariant under mod-
ular transformations preserving the spin structure, ZP=® is invariant under the

full modular transformations.

Let us look into details of the spectum (40). As we have seen in the last
section, the N = 4 characters are expanded in terms of the characters of the

level-1 SU(2) current algebra.
chysi(r,0) = c1:(r)chiZP(1,0) + ca4(r) chio P (r,6) . (41)

Then using a variant of the Jacobi identity, one can show that the particle spectra

is supersymmetric, R(r; g = 0) = 0, irrespectively of the branching coefficients
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€14, C€2,. Thus the SU(2) current algebra on the world sheet is essential to the
spacetime supersymimetry in six dimensions. Concerning the left mover, one

obtains

4
1
L= (—) (cl,;(r) « eh®" + ¢g4(r) - chfg) - chPe, (42)
n 1 56
Here chf” and chs"':_ﬁ7 are characters of the E; current algebras given by

chf" = chfo(”)chfz%m + chgm)ch,s:ul(z) (43)
chf_g = chf_z,o(mch,sz%(z) + chg_zo.(u)chffom .

The explicit form of the branching coefficients c;;, ¢2; can be read off from

egs.(12),(13). From eq.(12) for a character without Witten index, we obtain

4
L =g (l) chPs . chPs (44)
n

Thus in this sector, the Eg ® F3 gauge symmetry is not broken. For those with

non-vanishing Witten indices, we have

cl,l=0 — q1/24q—1/4(1 + q2 + .. .)
c2u=0 = ¢/*(2¢ + 2¢* + - - ) (45)
cii=1 = ¢/MqV4(2q + 4¢* + -+ )

cza=1= ¢+ g+ 4¢" +---) .
Substituting them into eqs.(37) and (39), we obtain

Li—o = (Vector)so(“) - (spjnor)so(‘*) .QSU(2) + 0(q)

L= = (scalar)so(4) .25V (spinor)so“) + O(q) ,

and
Rizo = q7! + (13357 + 2487 + (vector)S°™) + 0(q)

Riz1 = @E7 + lE7 . 2SU(2) + O(Q) .

25



Now one can extract the massless particle spectra. The term Ri=o+ Li=o gives
the supergravity and the E; ® Eg super Yang-Mills multiplets in six dimensions.
On the other hand one scalar multiplet of 56 of E7; and two Er-singlet scalar
multiplets (making a doublet of SU(2)) come from R;=; - Li=1. The cross term
of the form Rﬁﬁ_ll + Li—o gives an extra-U(1) gauge multiplet and Rs,oz)l - Li=1
adds a Er-singlet scalar multiplet. Thus N;; is the number of 56 of E;, and
Nj=10+ 2Ny, counts the E7-singlets. The number of extra-U(1) gauge bosons is
given by Np=1,0.

5. COMPACTIFICATION DOWN TO FOUR DIMENSIONS

We have seen the relation between the superconformal symmetry on the
world sheet and the geometry of K; surface and examined its implication to the
particle spectra of the heterotic string theory on R®! x Kj. Let us now turn to

more realistic case of compactification down to four dimensions.

In the case of K; surface, the N = 2 superconformal symmetry is enhanced
to the N = 4 symmetry. This is due to the holomorphic two-form on K3, which
implies holomorphic currents J*(z) on the world sheet. In the case of complex
three-dimensional manifold Ms with non-trivial SU(3) curvature (Calabi-Yau
three-fold), we have a unique holomorphic three form €;;,dX* A dX? A dX*, and

this also implies the existence of holomorphic fields on the world sheet.
X(2) = eptiwivh . T(2) = anvivivh

These holomorphic fields have conformal dimension 3/2 and U(1) charges +3.
Just as J* cobined with the U(1) current J made the level-1 SU(2) current
algebra for K3, we obtain N = 2 superconformal algebra of ¢ = 1 from X, X

with J and J - J in additional to the original N = 2 algebra with ¢ = 9. Thus,
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for Calabi-Yau three-fold, symmetries of the non-linear o-model is again larger

than IV = 2.

Repeating the argument in section 3, we see that the building blocks of
a partition function for the non-linear o-model, ch‘;’\,"s‘r ?(r,0), are expanded in
terms of the NS characters of the ¢ = 1 N = 2 superconformal algebra (by
construction periodicities of X (z) are the same as those of the fermions ¥*).
There are three unitary representations for the ¢ = 1 N = 2 superconformal
algebra with the U(1) charges Q@ = 0,+1, and their characters, fo(r,8), are
given
1§ ghnea) tanea)

fa(r.6) = (1) nez

Then we can write as
chid ™ (r,8) = c1(r) fa=0(7,8) + c2(7) fa=+1(r, 0) + c3(r) fo=-1(7,0) .
By imposing the condition
chns(r,0 = 7 + 77) - (—¢%/®) = (Witten index ) ,
we obtain

-fo . . 1
ch3d%(r,8) = —(Witten index ) - 2 (fe=t1(r,0) — fg=-1(7,9))

+e(r) - fa=o(7,0) + d(7) - (fa=+1(r,8) + fo=-1(r,0))

(50)

Though the representation theory of this symmetry is still to be delevoped**
and explicit forms of ¢(r) and d(r) are not eleborated yet, we can discuss the

consequences of this symmetry from rather simple considerations as follows.

Let us first consider representations with non-vanishing Witten index. By

setting € = +1/2 in eq.(1), NS representation flows into R representation. In the

**The commutation relations of the extended algebra have receltly been worked out321,
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R sector, the highest weight of Lj

Ly=Lo =+ %Jo + g

in a unitary representation is bounded below by 3/8. For such a representation
to have non-vanishing Witten index, the highest weight must hit the bound.
Then non-vanishing Witten index requires h = £Q/2 in the NS sector. Since
the f-dependence of the character chyd®?(r, ) is dictated by the c =1 N =2
characters fg(r,6), the highest weight for the U(1) charge is either @ =0, Q@ = +1
or Q = —1. Thus the candidates are (h,Q) = (0,0), (1/2,1) and (1/2,-1).
Those without Witten index must lie above these bounds; (h > 0,Q = 0) or

(h>1/2,Q = £1).

The vacuum representation (k, @) = (0,0), however, turns out to have a zero
Witten index. As one can see from eq.(50), non-vanishing Witten index implies

U(1) charge asymmetry in the representation;
ch3'f°'d(1',—9) # ch3~7%(r 9) .

The representation with @ = 0 is invariant under the charge conjugation and its
Witten index must vanish. Thus only those with (k,Q) = (1/2,1) or (1/2,-1)

may have Witten indices.
We can now list up the unitary representations for the Calabi-Yau three-fold.
(1) Representations with Witten index (k,Q) = (1/2,1),(1/2,-1)

Since fg=+1(7,0) is expanded as
fQ:;t]_(T, 0) = q-% . (q%eiio + .. .) ,

the characters for the Calabi-Yau three-fold ch®™/?%(r,8) with Q = +1/2 are
written as
chg=41(7,0) = fo=21(7,0) + c+(7) - f=o(r,0)

(51)
+ dt('r) : (fQ:l(rv 0) + fQ=—1(Ta 0)) .
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Witten index for chg=1+; is +1.
(2) Representations without Witten index

As we have seen all the unitary representation with @ = 0 and h > 0 belong
to this class. Also there are representations with A > 1/2, when a ground state

must form a doublet Q = +£1.

By examining the partition function of Gepner’s model for Mg, in which the
above symmetry is realized, one can check that the representations listed in the

above in fact appear in the spectrum.

As I have illustrated in section 4 in the case of K3 surface, we can construct
the partition function for the heterotic string theory on R3! x M from a modular
invariant sesquilinear form of the characters chy¢ % In this case one of the
Es gauge symmetry is broken down to Eg, and there appear massless scalar
multiplets of 27 and 27* of Eg. Their numbers are given from the multiplicities

of (|chg=+1|® + |chg=-1|?) and (chg=+1 - chg=-1 + chg=—1 - chg=+1) respectively.

Now a peculiar feature emerges from the following identity.

(52)
+ |fe=41 — fg=21|?

Since |fg=+1 — fg=-1|? is invariant under 7 — 1/7 and r — 7 + 2, interchanging
of (|chg=11|*+ |chg=-1|?) With (chg=t1-chg=—1+ chg=—_1- chg=+1) does not spoil
the modular invariance of the partition function. If both of these two partition
functions, before and after this operation, correspond to some Calabi-Yau three-
folds, Euler number of these three-folds differ by four. Can we understand this as
some geometrical operation such as surgery? In the terms of the particle spectra
in four dimensions, 27 and 27* scalar multiplets of Eg are interchanged under this
operation. This may have some interesting implications in the phenomenology

of the superstring compactification.
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